Linux Commands Examples

A great documentation place for Linux commands

ping

6 send ICMP ECHO_REQUEST to network hosts


see also : ping6 - netstat - ifconfig

Synopsis

ping [-LRUbdfnqrvVaAB] [-c count] [-m mark] [-i interval] [-l preload] [-p pattern] [-s packetsize] [-t ttl] [-w deadline] [-F flowlabel] [-I interface] [-M hint] [-N nioption] [-Q tos] [-S sndbuf] [-T timestamp option] [-W timeout] [hop ...] destination


add an example, a script, a trick and tips

: email address (won't be displayed)
: name

Step 2

Thanks for this example ! - It will be moderated and published shortly.

Feel free to post other examples
Oops ! There is a tiny cockup. A damn 404 cockup. Please contact the loosy team who maintains and develops this wonderful site by clicking in the mighty feedback button on the side of the page. Say what happened. Thanks!

examples

5
source

Ping two ethernet card on the same computer and on the same subnet

To fix this issue, i use two virtual machine. And i can ping eth1 or eth2, with eth2 or eth1.

Thank you,all for yours comments and help.

2
source

LINUX Ping host, Display error on failure

I think awk is not necessary. Unless I'm missing something that code should do the trick:

#!/bin/bash

host=$1
ping -c1 $host > /dev/null 2> /dev/null
[[ $? == 0 ]] && echo "$host is up" || echo "$host is down/not reachable"

Here an example:

$ ./checkping www.google.com
www.google.com is up
$ ./checkping www.google.utld
www.google.utld is down/not reachable
0
source

How can I ping via an alternate gateway?

Sorry, you can only have one default gateway. You can have multiple gateways, but only one for every network.

The problem is, that both mentioned IPs are in the same network. Also you specified your CIDRs wrongly: You meant 10.1.1.0/24 as having a subnet of 255.255.255.0; or even have a bigger subnet e.g. 10.0.0.0/8 as being 255.0.0.0.

You can therefore ping any host inside your network (10.0.0.0/8) or any host reachable via a (or the) gateway. But having two gateways for the same network is not possible.

0
source

Linux Ping: Show time out

I am afraid but there is no 100% solution to that with standard ping. Even with ping -v for verbose output ping would be silent in case of timeouts. You could try to use:

ping -w 2 192.168.199.1
PING 192.168.199.1 (192.168.199.1) 56(84) bytes of data.

--- 192.168.199.1 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 1007ms

This would stop ping after 2 seconds and then show the number of packets transmitted and packet loss. Another option would be to use mtr.

0
source

How to ping when behind a proxy?

In general you can't. ping needs a direct network connection on the IP level to do its work. A proxy works on a higher layer of the TCP/IP network model, where there is no direct access to the IP protocol.

You would need to somehow circumvent the proxy (change firewall settings, use a VPN, ...). Whether this is possible (and allowed) depends on your network configuration, but it's probably not possible.

As a workaround, there are many web-based ping services available (search for "web-based ping"). These will work.

0
source

linux ping not actually sending 1 packet per second

It looks like you have one of the versions of ping that does a DNS lookup for every received packet. Since a DNS UDP packet has to traverse the same congested network as ping packets, the packet may be dropped. With timeouts and retries it can take significant time for a DNS request to return data. The time consumed waiting for a DNS response delays the sending of the next ping packet because your ping is both single-threaded and doesn't use an asynchronous timer to drive each ping.

If my diagnosis is correct, adding -n to ping should get rid of the delays.

0
source

How can I get ping timeout below 1 second?

Found a similar question out there, and the answer was a ping alternative called fping. Maybe it'll be of some use to you. http://serverfault.com/questions/200468/how-can-i-set-a-short-timeout-with-the-ping-command

0
source

(linux) tool to monitor "quality" of tcp connection?

How do you define "how fast the packets get delivered" ? If you want to know how much time it takes for a packet to reach point B from point A, then I think it can't be done without sub-millisecond accurate clock synchronization.

What I would try is to capture some real traffic (ie. while actually using your application), and analyze it with WireShark, looking for the delay between some data sent and the corresponding ACK packet. That gives you the round trip time (RTT) for your traffic.

update:

The TCP stack has to keep track of the RTT for each connection. (it's used to optimize packet transmission and manage window size). If you're using Linux, and it's your own application, you can use the getsockopt(fd,.. ,TCP_INFO,...) the data returned includes all this internal parameters. You could peek at this data every second and pipe to a display app.

0
source

How do I check that a *nix machine is online without ping?

nc -z $REMOTESERVER 22 
echo $?

If you are using SSH to do rsync that port should be open.

0
source

Test script if host is back online

The idea looks right to me. By using while :; do ... you can make it portable to normal Bourne shells. The expr calls seems unnecessary. Also, you probably want to break out of the loop when the host is found.

while :; do
    if ping -c 1 $1; then
        notify-send "$1 back online"
        break
    fi
    sleep 30s
done

description

ping uses the ICMP protocol’s mandatory ECHO_REQUEST datagram to elicit an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams (’’pings’’) have an IP and ICMP header, followed by a struct timeval and then an arbitrary number of ’’pad’’ bytes used to fill out the packet.

ping6 can also send Node Information Queries (RFC4620).

options

-a

Audible ping.

-A

Adaptive ping. Interpacket interval adapts to round-trip time, so that effectively not more than one (or more, if preload is set) unanswered probes present in the network. Minimal interval is 200msec for not super-user. On networks with low rtt this mode is essentially equivalent to flood mode.

-b

Allow pinging a broadcast address.

-B

Do not allow ping to change source address of probes. The address is bound to one selected when ping starts.

-m mark

use mark to tag the packets going out. This is useful for variety of reasons within the kernel such as using policy routing to select specific outbound processing.

-c count

Stop after sending count ECHO_REQUEST packets. With deadline option, ping waits for count ECHO_REPLY packets, until the timeout expires.

-d

Set the SO_DEBUG option on the socket being used. Essentially, this socket option is not used by Linux kernel.

-F flow label

Allocate and set 20 bit flow label on echo request packets. (Only ping6). If value is zero, kernel allocates random flow label.

-f

Flood ping. For every ECHO_REQUEST sent a period ’’.’’ is printed, while for ever ECHO_REPLY received a backspace is printed. This provides a rapid display of how many packets are being dropped. If interval is not given, it sets interval to zero and outputs packets as fast as they come back or one hundred times per second, whichever is more. Only the super-user may use this option with zero interval.

-i interval

Wait interval seconds between sending each packet. The default is to wait for one second between each packet normally, or not to wait in flood mode. Only super-user may set interval to values less 0.2 seconds.

-I interface address

Set source address to specified interface address. Argument may be numeric IP address or name of device. When pinging IPv6 link-local address this option is required.

-l preload

If preload is specified, ping sends that many packets not waiting for reply. Only the super-user may select preload more than 3.

-L

Suppress loopback of multicast packets. This flag only applies if the ping destination is a multicast address.

-N nioption

Send ICMPv6 Node Information Queries (RFC4620), instead of Echo Request.

name

Queries for Node Names.

ipv6

Queries for IPv6 Addresses. There are several IPv6 specific flags.

ipv6-global

Request IPv6 global-scope addresses.

ipv6-sitelocal

Request IPv6 site-local addresses.

ipv6-linklocal

Request IPv6 link-local addresses.

ipv6-all

Request IPv6 addresses on other interfaces.

ipv4

Queries for IPv4 Addresses. There is one IPv4 specific flag.

ipv4-all

Request IPv4 addresses on other interfaces.

subject-ipv6=ipv6addr

IPv6 subject address.

subject-ipv4=ipv4addr

IPv4 subject address.

subject-name=nodename

Subject name. If it contains more than one dot, fully-qualified domain name is assumed.

subject-fqdn=nodename

Subject name. Fully-qualified domain name is always assumed.

-n

Numeric output only. No attempt will be made to lookup symbolic names for host addresses.

-p pattern

You may specify up to 16 ’’pad’’ bytes to fill out the packet you send. This is useful for diagnosing data-dependent problems in a network. For example, -p ff will cause the sent packet to be filled with all ones.

-D

Print timestamp (unix time + microseconds as in gettimeofday) before each line.

-Q tos

Set Quality of Service -related bits in ICMP datagrams. tos can be either decimal or hex number. Traditionally (RFC1349), these have been interpreted as: 0 for reserved (currently being redefined as congestion control), 1-4 for Type of Service and 5-7 for Precedence. Possible settings for Type of Service are: minimal cost: 0x02, reliability: 0x04, throughput: 0x08, low delay: 0x10. Multiple TOS bits should not be set simultaneously. Possible settings for special Precedence range from priority (0x20) to net control (0xe0). You must be root (CAP_NET_ADMIN capability) to use Critical or higher precedence value. You cannot set bit 0x01 (reserved) unless ECN has been enabled in the kernel. In RFC2474, these fields has been redefined as 8-bit Differentiated Services (DS), consisting of: bits 0-1 of separate data (ECN will be used, here), and bits 2-7 of Differentiated Services Codepoint (DSCP).

-q

Quiet output. Nothing is displayed except the summary lines at startup time and when finished.

-R

Record route. Includes the RECORD_ROUTE option in the ECHO_REQUEST packet and displays the route buffer on returned packets. Note that the IP header is only large enough for nine such routes. Many hosts ignore or discard this option.

-r

Bypass the normal routing tables and send directly to a host on an attached interface. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has no route through it provided the option -I is also used.

-s packetsize

Specifies the number of data bytes to be sent. The default is 56, which translates into 64 ICMP data bytes when combined with the 8 bytes of ICMP header data.

-S sndbuf

Set socket sndbuf. If not specified, it is selected to buffer not more than one packet.

-t ttl

Set the IP Time to Live.

-T timestamp option

Set special IP timestamp options. timestamp option may be either tsonly (only timestamps), tsandaddr (timestamps and addresses) or tsprespec host1 [host2 [host3 [host4]]] (timestamp prespecified hops).

-M hint

Select Path MTU Discovery strategy. hint may be either do (prohibit fragmentation, even local one), want (do PMTU discovery, fragment locally when packet size is large), or dont (do not set DF flag).

-U

Print full user-to-user latency (the old behaviour). Normally ping prints network round trip time, which can be different f.e. due to DNS failures.

-v

Verbose output.

-V

Show version and exit.

-w deadline

Specify a timeout, in seconds, before ping exits regardless of how many packets have been sent or received. In this case ping does not stop after count packet are sent, it waits either for deadline expire or until count probes are answered or for some error notification from network.

-W timeout

Time to wait for a response, in seconds. The option affects only timeout in absense of any responses, otherwise ping waits for two RTTs.

When using ping for fault isolation, it should first be run on the local host, to verify that the local network interface is up and running. Then, hosts and gateways further and further away should be ’’pinged’’. Round-trip times and packet loss statistics are computed. If duplicate packets are received, they are not included in the packet loss calculation, although the round trip time of these packets is used in calculating the minimum/average/maximum round-trip time numbers. When the specified number of packets have been sent (and received) or if the program is terminated with a SIGINT, a brief summary is displayed. Shorter current statistics can be obtained without termination of process with signal SIGQUIT.

If ping does not receive any reply packets at all it will exit with code 1. If a packet count and deadline are both specified, and fewer than count packets are received by the time the deadline has arrived, it will also exit with code 1. On other error it exits with code 2. Otherwise it exits with code 0. This makes it possible to use the exit code to see if a host is alive or not.

This program is intended for use in network testing, measurement and management. Because of the load it can impose on the network, it is unwise to use ping during normal operations or from automated scripts.

availability

ping is part of iputils package and the latest versions are available in source form at http://www.skbuff.net/iputils/iputils-current.tar.bz2.

duplicate and damaged packets

ping will report duplicate and damaged packets. Duplicate packets should never occur, and seem to be caused by inappropriate link-level retransmissions. Duplicates may occur in many situations and are rarely (if ever) a good sign, although the presence of low levels of duplicates may not always be cause for alarm.

Damaged packets are obviously serious cause for alarm and often indicate broken hardware somewhere in the ping packet’s path (in the network or in the hosts).

icmp packet details

An IP header without options is 20 bytes. An ICMP ECHO_REQUEST packet contains an additional 8 bytes worth of ICMP header followed by an arbitrary amount of data. When a packetsize is given, this indicated the size of this extra piece of data (the default is 56). Thus the amount of data received inside of an IP packet of type ICMP ECHO_REPLY will always be 8 bytes more than the requested data space (the ICMP header).

If the data space is at least of size of struct timeval ping uses the beginning bytes of this space to include a timestamp which it uses in the computation of round trip times. If the data space is shorter, no round trip times are given.

security

ping requires CAP_NET_RAWIO capability to be executed. It may be used as set-uid root.

trying different data patterns

The (inter)network layer should never treat packets differently depending on the data contained in the data portion. Unfortunately, data-dependent problems have been known to sneak into networks and remain undetected for long periods of time. In many cases the particular pattern that will have problems is something that doesn’t have sufficient ’’transitions’’, such as all ones or all zeros, or a pattern right at the edge, such as almost all zeros. It isn’t necessarily enough to specify a data pattern of all zeros (for example) on the command line because the pattern that is of interest is at the data link level, and the relationship between what you type and what the controllers transmit can be complicated.

This means that if you have a data-dependent problem you will probably have to do a lot of testing to find it. If you are lucky, you may manage to find a file that either can’t be sent across your network or that takes much longer to transfer than other similar length files. You can then examine this file for repeated patterns that you can test using the -p option of ping.

ttl details

The TTL value of an IP packet represents the maximum number of IP routers that the packet can go through before being thrown away. In current practice you can expect each router in the Internet to decrement the TTL field by exactly one.

The TCP/IP specification states that the TTL field for TCP packets should be set to 60, but many systems use smaller values (4.3 BSD uses 30, 4.2 used 15).

The maximum possible value of this field is 255, and most Unix systems set the TTL field of ICMP ECHO_REQUEST packets to 255. This is why you will find you can ’’ping’’ some hosts, but not reach them with telnet(1) or ftp(1).

In normal operation ping prints the ttl value from the packet it receives. When a remote system receives a ping packet, it can do one of three things with the TTL field in its response:

Not change it; this is what Berkeley Unix systems did before the 4.3BSD Tahoe release. In this case the TTL value in the received packet will be 255 minus the number of routers in the round-trip path.

Set it to 255; this is what current Berkeley Unix systems do. In this case the TTL value in the received packet will be 255 minus the number of routers in the path from the remote system to the pinging host.

Set it to some other value. Some machines use the same value for ICMP packets that they use for TCP packets, for example either 30 or 60. Others may use completely wild values.


bugs

Many Hosts and Gateways ignore the RECORD_ROUTE option.

The maximum IP header length is too small for options like RECORD_ROUTE to be completely useful. There’s not much that that can be done about this, however.

Flood pinging is not recommended in general, and flood pinging the broadcast address should only be done under very controlled conditions.


history

The ping command appeared in 4.3BSD.

The version described here is its descendant specific to Linux.


see also

netstat , ifconfig .

How can this site be more helpful to YOU ?


give  feedback